Skip to main content
Log in

Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Free flow electrophoresis was employed to separate renal cortical plasma membranes into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. During the separation adenylate cyclase activity was found to parallel the activity of Na+−K+-activated ATPase, an enzyme which is present in contraluminal but not in luminal membranes. In the basal-lateral membrane fraction the specific activities of adenylate cyclase and Na+−K+-activated ATPase were 4.4 and 4.6 times greater, respectively, than in the brush border fraction.

The adenylate cyclase of the basal-lateral membrane fraction was specifically stimulated by parathyroid hormone which maximally increased enzyme activity eightfold. The biologically active (1–34) peptide fragment of parathyroid hormone produced a 350% increase in adenylate cyclase activity. In contrast, calcitonin, epinephrine and vasopressin maximally stimulated the enzyme by only 55, 35 and 30%, respectively.

These results indicate that adenylate cyclase, specifically stimulated by parathyroid hormone, is distributed preferentially in the contraluminal region of the plasma membrane of renal cortical epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agus, Z.S., Gardner, L.B., Beck, L.H., Goldberg, M. 1973. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium, and phosphate.Am. J. Physiol. 224:1143

    PubMed  Google Scholar 

  • Agus, Z.S., Puschett, J.B., Senesky, D., Goldberg, M. 1971. Mode of action of parathyroid hormone and cyclic adenosine 3′,5′-monophosphate on renal tubular phosphate reabsorption in the dog.J. Clin. Invest. 50:617

    Google Scholar 

  • Bär, H.-P., Hechter, O. 1969. Adenyl cylase assy in fat cell ghosts.Anal. Biochem. 29:476

    PubMed  Google Scholar 

  • Chase, L.R., Aurbach, G.D. 1967. Parathyroid function and the renal excretion of 3′,5′-adenylic acid.Proc. Nat. Acad. Sci. USA 58:518

    PubMed  Google Scholar 

  • Chase, L.R., Aurbach, G.D. 1968. Renal adenyl cyclase: Anatomically separate sites for parathyroid hormone and vasopressin.Science 159:545

    PubMed  Google Scholar 

  • DiBella, F.P., Dousa, T.P., Miller, S.S., Arnaud, C.D. 1974. Parathyroid hormone receptors of renal cortex: Specific binding of biologically active,125I-labeled hormone and relationship to adenylate cyclase activation.Proc. Nat. Acad. Sci. USA 71:723

    PubMed  Google Scholar 

  • Ericsson, J.L.E., Trump, B.F. 1969. Electron microscopy of the uriniferous tubules.In: The Kidney. C. Rouiller and A.F. Muller, editors. Vol. 1, p. 351. Academic Press, New York

    Google Scholar 

  • Forte, L.R. 1972. Characterization of the adenyl cyclase of rat kidney plasma membranes.Biochim. Biophys. Acta 266:524

    PubMed  Google Scholar 

  • Grantham, J.J., Burg, M.B. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules.Am. J. Physiol. 211:255

    PubMed  Google Scholar 

  • Györy, A.Z., Kinne, R. 1971. Energy source for transepithelial sodium transport in rat renal proximal tubules.Pflügers Arch. 327:234

    Google Scholar 

  • Hannig, K. 1968. Die Ablenkungselektrophorese. Handbuch der Max-Planck-Gesellschaft, Munich, 116

  • Heidrich, H.G., Kinne, R., Kinne-Saffran, E., Hannig, K. 1972. The polarity of the proximal tubule cell in rat kidney.J. Cell Biol. 54:232

    PubMed  Google Scholar 

  • Kinne, R., Kinne-Saffran, E. 1969. Isolierung und enzymatische Charakterisierung einer Bürstensaumfraktion der Rattenniere.Pflügers Arch. 308:1

    Google Scholar 

  • Kinne, R., Schmitz, J.E., Kinne-Saffran, E. 1971. The localization of the Na+−K+-ATPase in the cells of rat kidney cortex: A study on isolated plasma membranes.Pflügers Arch. 329:191

    Google Scholar 

  • Kinne, R., Shlatz, L.J., Kinne-Saffran, E., Schwartz, I.L. 1975. Distribution of membrane-bound cyclic AMP-dependent protein kinase in plasma membranes of cells of the kidney cortex.J. Membr. Biol. 24:145

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, H.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Marcus, R., Aurbach, G.D. 1971. Adenyl cyclase from renal cortex.Biochim. Biophys. Acta 242:410

    PubMed  Google Scholar 

  • Marx, S.J., Fedak, S.A., Aurbach, G.D. 1972a. Preparation and characterization of a hormone-responsive renal plasma membrane fraction.J. Biol. Chem. 247:6913

    PubMed  Google Scholar 

  • Marx, S.J., Woodward, C.J., Aurbach, G.D. 1972b. Calcitonin receptors of kidney and bone.Science 178:999

    PubMed  Google Scholar 

  • Marx, S.J., Woodward, C.J., Aurbach, G.D., Glossman, H., Keutmann, H.T. 1973. Renal receptors for calcitonin.J. Biol. Chem. 248:4797

    PubMed  Google Scholar 

  • Melson, G.L., Chase, L.R., Aurbach, G.D. 1970. Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules.Endocrinology 86:511

    PubMed  Google Scholar 

  • Molbert, E.F.G., Duspiva, F., Von Deimling, O.H. 1960. The demonstration of alkaline phosphatase in the electron microscope.J. Biophys. Biochem. Cytol. 7:387

    PubMed  Google Scholar 

  • Pockrandt-Hemstedt, H., Schmitz, J.E., Kinne-Saffran, E., Kinne, R. 1972. Morphologische und biochemische Untersuchungen über die Oberflächenstruktur der Bürstensaummembran der Rattenniere. (Surface structure of isolated brushborder of rat kidney: Morphological and biochemical analysis.)Pflügers Arch. 333:297

    Google Scholar 

  • Ray, T.K. 1970. A modified method for the isolation of the plasma membrane from rat liver.Biochim. Biophys. Acta 196:1

    PubMed  Google Scholar 

  • Samiy, A.H., Hirsch, P.F., Ramsay, A.G. 1965. Localization of phosphaturic effect of parathyroid hormone in nephron of the dog.Am. J. Physiol. 208:73

    PubMed  Google Scholar 

  • Schmidt, U., Dubach, U.C. 1971. Na K stimulated adenosinetriphosphatase: Intracellular localization within the proximal tubule of the rat nephron.Pflügers Arch. 330:265

    Google Scholar 

  • Shlatz, L.J., Schwartz, I.L. 1972. Studies on the adenyl cyclase of rat renal cortical and medullary plasma membranes.Physiologist 15:265

    Google Scholar 

  • Sutcliffe, H.S., Martin, T.J., Eisman, J.A., Pilczyk, R. 1973. Binding of parathyroid hormone to bovine kidney-cortex plasma membranes.Biochem. J. 134:913

    PubMed  Google Scholar 

  • Talmage, R.V., Kraintz, F.W. 1954. Progressive changes in renal phosphate and calcium excretion in rats following parathyroidectomy or parathyroid administration.Proc. Soc. Exp. Biol. Med. 87:263

    PubMed  Google Scholar 

  • Wilfong, R.F., Neville, D.M., Jr. 1970. The isolation of a brush border membrane fraction from rat kidney.J. Biol. Chem. 245:6106

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shlatz, L.J., Schwartz, I.L., Kinne-Saffran, E. et al. Distribution of parathyroid hormone-stimulated adenylate cyclase in plasma membranes of cells of the kidney cortex. J. Membrain Biol. 24, 131–144 (1975). https://doi.org/10.1007/BF01868619

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868619

Keywords

Navigation